Rem PD, Sereikaite V, Fernandez-Fernandez D, Reinartz S, Ulrich D, Fritzius T, Trovò L, Roux S, Chen Z, Rondard P, Pin JP, Schwenk J, Fakler B, Gassmann M, Barkat TR, Strømgaard K, Bettler B (2022). Soluble amyloid-β precursor peptide does not regulate GABAB receptor activity.
bioRxiv 2022.08.02.502499;

Solyga M, Barkat TR. Distinct integration of spectrally complex sounds in mouse primary auditory cortices (2022).
Hearing Research 417, 108455  doi: 10.1016/j.heares.2022.108455 [link]

Studer F, Barkat TR. Inhibition in the auditory cortex (2022).
Neuroscience and Biobehavioral Reviews 132, 61-75, [link]

Navntoft CA, Landsberger DM, Barkat TR, Marozeau JD. The Perception of Ramped Pulse Shapes in Cochlear Implant Users (2021).
Trends in Hearing 25: 23312165211061116. doi: 10.1177/23312165211061116 [link]

Solyga M, Barkat TR. Emergence and function of cortical offset responses in sound termination detection (2021).
eLife 10:e72240 doi: 10.7554/eLife.72240 [link]

De Franceschi G, Barkat TR. Task-induced modulations of neuronal activity along the auditory pathway (2021).
Cell Reports 37, 11015. doi:org/10.1016/j.celrep.2021.110115 [link]

Nakamura M, Valerio P, Bhumika S, Barkat TR. Sequential organization of critical periods in the mouse auditory system (2020).
Cell Reports 32, 1-8. doi:org/10.1016/j.celrep.2020.108070 [link]

Kalish BT*, Barkat TR*, Diel EE, Zhang EJ, Greenberg ME, Hensch TK. Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes (2020).
Proc. Natl. Acad. Sci. 117(21):11744-11752. doi: 10.1073/pnas.1920433117 [link]

Navntoft CA, Marozeau JD, Barkat TR. Ramped pulse shapes are more efficient for cochlear implant stimulation in an animal model (2020).
Scientific Reports 10:3288. [link]

Bhumika S, Nakamura M, Valerio P, Solyga M, Lindén H, Barkat TR. A late critical period for frequency modulated sweeps in the mouse auditory system (2020).
Cerebral Cortex 30:4, 2586-1599, [link]

Christensen RK, Lindén H, Nakamura M, Barkat TR. White noise background improves tone discrimination by suppressing cortical tuning curves (2019).
Cell Reports 29, 1-13. doi:org/10.1016/j.celrep.2019.10.049 [link]

Solyga M, Barkat TR. Distinct processing of tone offset in two primary auditory cortices (2019).
Scientific Reports 9:9581. doi:org/10.1038/s41598-019-45952-z [link]

Navntoft CA, Marozeau JD, Barkat TR. Cochlear Implant Surgery and Electrically-Evoked Auditory Brainstem Response Recordings in C57BL/6 Mice (2019).
J. Vis. Exp. (143), e58073, doi:10.3791/58073 [link]

Navntoft CA & Adenis V. Does Auditory Cortex Code Temporal Information from Acoustic and Cochlear Implant Stimulation in a Similar Way? (2018).
J Neuroscience. 38(2):260-262 [pdf]

Navntoft CA. Tracking down nonresponsive cortical neurons in cochlear implant stimulation (2017).
eNeuro.0095-17 [pdf]

Favre MR, Barkat TR, LaMendola D, Khazen G, Markram H and Markram. General developmental health in the VPA-rat model of autism (2013).
Front. Behav. Neurosci. 7,88. [pdf]

Barkat TR, Polley DB, Hensch TK. A critical period for auditory thalamocortical connectivity(2011).
Nature Neuroscience, 14(9), 1189-1194. [pdf]

Hackett TA*, Barkat TR*, O’Brien BJ, Hensch TK, Polley DB. Linking topography to tonotopy in the mouse auditory thalamocortical circuit (2011).
J. Neuroscience, 31(8), 2983-2995. [pdf]

Silva G, Le Bé J, Riachi I, Rinaldi T, Markram K, Markram H. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism (2009).
Front. Syn. Neurosci, 1, 1. [pdf]

Rinaldi T, Perrodin C, Markram H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism (2008).
Front. Neural Circuits, 2, 4. [pdf]

Rinaldi T, Silberberg G, Markram H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid (2008).
Cerebral Cortex, 18, 763-770.[pdf]

Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing caused by prenatal exposure to valproic acid (2008).
Neuropsychopharmacology, 33, 901-912.[pdf]

Markram H, Rinaldi T, Markram K. The Intense World Syndrome – an alternative hypothesis for autism (2007).
Frontiers in Neuroscience, 1, 77-96.[pdf]

Rinaldi T, Kulangara K, Antoniello K, Markram H. Elevated NMDA receptor levels and enhanced postsynaptic long term potentiation in an animal model of autism (2007).
Proc. Natl. Acad. Sci.,104, 13501-6.[pdf]

Köster U, Bergmann UC, Carminati D, Catherall J, Cederkäll J, Correia JG, Crepieux B, Dietrich M, Elder K, Fedoseyev VN, Fraile L, Franchoo S, Fynbo H, Georg U, Giles T, Joinet A, Jonsson OC, Kirchner R, Lau Ch, Lettry J, Maier HJ, Mishin VI, Oinonen M, Peräjärvi K, Ravn HL, Rinaldi T, Santana-Leitner M, Wahl U, Weissman L. The ISOLDE Collaboration. Oxide fiber at ISOLDE (2003).
Nuclear Instruments and Methods in Physics Research B, 204, 303-313. [pdf]

*authors contributed equally to the work